

Egypt–SPIN Newsletter

Issue 10, Apr. – Jun., 2005

Sponsored by SECC

Egypt-SPIN Newsletter Issue 10, Apr. – Jun., 2005
Sponsored by SECC Page 1 of 25

5 to 9 June, 2005, the “Intermediate Concepts of CMMI” course had been conducted
in Egypt and is sponsored by SECC with collaboration with USAID/ICT. See the next
page for more details.

From the Editor (Ahmed S. El-Shikh)

Welcome to our 10th issue of Egypt –SPIN newsletter. In each issue we are trying to put together
relevant information in the form of articles and recaps from the previous 6 months events hoping
to provide our members of Egypt – SPIN with information to support their current interests.

This issue conducts some hot topics within three series and two stand-alone articles. Explanation
of one of CMMI process area (1st article), discussion of the software industry in Egypt (2nd article),
sharing real life experience in the field of software testing (3rd article), summarizing the content of
a negotiation course (4th article) and introduction for Personal Software Process, PSP (5th article).

Eng. Sameh Zied starts a series for explaining the CMMI version 1.1 process areas as
presented in the “Intermediate Concepts of CMMI” course. The article describes the use of
Decision Analysis and Resolution (DAR) process area in a software development organization.

Dr. Ramiz Kameel starts a series to discuss the nature of the Egyptian software industry.
His article defines and categorizes the current patterns of software production process in the
Egyptian community, also defines different roles in it.

Eng. Omar Kamal continues his series about software testing. His article introduces the xUnit
Testing Framework as one of the most popular testing frameworks. He defines its main feature
and explores its known extensions.

Eng. Ahmed Abd El Aziz Shares his understanding from a negotiation methods course that he
had attend with the SECC. His article describes how to map and use these negotiation
techniques in day-by-day activities in the field of project management.

Eng. Ahmed hammad introduces the Personal Software Process (PSP). He summarizes his
understanding and real life experience with the PSP from the official SEI training course. He
shows how the PSP can help the single programmer building high quality software products.

We hope we succeed to give you an idea about what is going in our community. Please write to
the editor your comments about our progress. We always ask you to submit short articles for
publication that deal with your experience in defining, developing and managing software efforts
as well as process improvement experience. Remember that our goal is to encourage an
interchange between our readers. You can email spin@secc.org.eg or jaselshikh@yahoo.com

Egypt-SPIN Newsletter Issue 10, Apr. – Jun., 2005
Sponsored by SECC Page 2 of 25

“Intermediate Concepts of CMMI” course in Egypt.

 By: The Editor

With participation from 20 IT specialists in Egypt, Software Engineering
Competence Center (SECC) in collaboration with USAID/ICT program had
conducted a training course for the “Intermediate Concepts of CMMI” within the
period of 5-9 June 2005 for the first time in Egypt.

The “Intermediate Concepts of CMMI” training course is delivered by the Software
Engineering Institute (SEI) and instructed by Chuck R. Myers and Richard E.
Barbour, Visiting Scientists at the (SEI). The course is delivered by two instructors
because of its interactive nature with the participants.

The course is designed to different types of audience, such as: (1) Candidate lead
appraisers for the SCAMPI Appraisal Method. (2) Systems and software engineers,
SEPG, EPG process personnel who need more in-depth knowledge of CMMI models.
(3) Candidate instructors interested in teaching the Introduction to CMMI.

The course has several objectives including help participants:

1. Establish links from their past model use and experiences to CMMI models.
2. Understand the relationships among model components, including both

staged and continuous representations.
3. Understand how to interpret and apply CMMI models effectively.
4. Share, learn, and exchange ideas with other participants about practical

implementation of each process area.

For successful participation in the course, SEI states a set of the prerequisites that
have to be fulfilled before participation, including:

1. Complete a formal SEI authorized training of the “Introduction to CMMI”
course.

2. Obtain experience with using the model before applying for the Intermediate
class.

3. Carefully study the full content of one representation of the CMMI
SE/SW/IPPD/SS model, Version 1.1, and Carefully study chapters 1-5 of the
other representation of the CMMI, or the CMMI book (Guidelines for Process
Integration and Product Improvement), by Chrissis, et. al., published by
Addison Wesley.

4. Complete and submit a pre-class assignment.
5. Capability of communicating well in English.

This five-day course is a prerequisite for “SCAMPI Lead Appraiser” Training and
“CMMI Instructor” Training. It introduces participants to detailed CMMI concepts,
including the relationships among CMMI model components.

The course contains lectures, participants’ presentations and class exercises and is
presented in a facilitative style designed to create dialog among participants and
instructors.

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 3 of 25

The following topics had been conducted in detailed:

• CMMI Product Suite.
• CMMI model representations.
• CMMI model components.
• Equivalent staging.
• Engineering process areas
• Project management process areas.
• Process management process areas.
• Support process areas.
• Quantitative management process areas.
• Acquisition process areas.
• IPPD process areas.
• Optimizing process areas.
• Overview of the SCAMPI appraisal method.

Course evaluation is based on three parts: (1) Pre-class assignment presentation
delivery. (2) Interactive class participation in the discussion, and (3) Closed-book
model knowledge exam that had been conducted at the start of day 5 of the course.
Be careful, if you plan to attend this course in its second run; try to get well
preparation to the closed book exam before you go to the course. Four days of
interactive participation is very hard to be compound with full night study to pass the
exam. A certificate of successful completion will be delivered to the participant if he
successfully fulfills the first and second evaluation parts plus a score equal to or
higher than 80% in the closed-book exam.

To share participants’ experiences and maximize the benefits from this course, the
newsletter will conduct an explanation series contains an article for each process
area. Each participant –who had already attend the Intermediate Concepts of CMMI
course- is welcome to write an article about his assigned process area to be
published in the coming issues of SPIN newsletter according to his/her time
constrains. We would like to thank Eng: Sameh Zied for his valuable suggestion
that had been recognized by most of course participants and lead us to start this
series.

By conducting this training course, the quality improvement efforts sponsored by
SECC in Egypt has been focused on individual’s skills improvements beside the over
all company maturity level improvement. Hope that this course can trigger the
appearance of significant number of SCAMPI lead Appraisers and CMMI Instructors to
provide a good leverage for the software industry in Egypt.

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 4 of 25

Table of Contents

CMMI Process Areas Explination Series:

Desaion Analysis and Resultion in Software Development…………..…........................5

Toward Egyptian Software Industry Series:

Egyptian Software Production Community……………………………………….......................10

Software Testing Techniques Series:

XUnit Testing Framework. [Part 1]………………………….……………………….......................14

Negotiations and Project Management Real Experince...18

PSP, the CMM for Single Programmer……………………...22

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 5 of 25

CMMI Process Areas Explanation Series:
Decision Analysis and Resolution in Software Development

By: Sameh Zied
Abstract — This article describes the use of

Decision Analysis and Resolution (DAR) process
area in Software Development organizations. DAR
is a Supporting Process at maturity level 3 of
CMMI version 1.1 model. DAR is perceived to
provide key advantage in certain decisions of
importance to software development and
acquisition. DAR is pervasive and may be applied
informally to make daily project decisions.

Keywords — CMMI, COTS, DAR, GG, GP,
EPG, PA, SG, SP

I. INTRODUCTION

HE purpose of this article is

examine the use of formal decision
process (DAR) for certain decisions
that are related to Software
Development and Acquisition.
Decisions related to selection of Design
have always been of concern. They
have snow ball impact on the
development, maintenance and phase-
out cycles of the product.

Process Improvement programs
involve many groups, for example,
Engineering Process Group (EPG),
Engineering, Testers, Project
Managers, and others. Much of group
work involves Decision Making. Being a
Facilitator, EPG meets various teams
to resolve issues and to arrive at
decisions. Applying a formal decision
process helps to arrive at higher
quality “non-subjective” solutions and
decisions. It also helps making teams
work better together, by focusing at
same time on same step.

II. BENEFITS OF DAR

DAR Cascades top management
expectation for making “objective”
decisions at certain situations. Making
better decision could lead to:

o Reduction in rework, and
o Buy-in from more stakeholders.

The following figure shows a
conceptual understanding of how DAR
can serve to realize management
objectives and vision.

Figure-1: DAR linkage to Organization Vision

III. WHEN DAR IS REQUIRED

DAR can be invoked during the
execution of any process when an
issue is encountered, as shown in the
next figure.

Figure-2: DAR is invoked from anywhere

DAR can only produce reliable results
when the issue is clearly defined and
communicated well among
participants. It is to be noted that a
key output of DAR is not only a
solution but also the associated risks.

T

Vision & Business
Objectives

Procedures and methods
defining the relationship
of tasks

• Solid basis for design selection
• Effective approaches for

leverage staffs competencies
• Selection of right suppliers

Practitioners trained to
implement process

Formal Decision Process
enhances team ability to arrive
at objective decisions

• Robust architecture for
product solution.

• Leverage staff
competencies to reduce
rework.

• Incorporate right COTS to
reduce time to market.

All PAs

DAR

Issues
Require
Decision

Solution

Clear definition of
issue is half the
solution

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 6 of 25

These risks can be reason for selecting
an alternative solution, even with
lower score.
Though a formal decision making
process may be used from
everywhere, the following sub-sections
describe the key decisions that
typically require a formal decision.

A. Technical Solution

A design solution is a robust to the
extent of alternative designs are
considered and trade-off is made.
Design decisions should be made
based on formal process to have
documented basis for any future
justification. Design Decision leads to
the generation of another level of
requirements and affects the scenarios
of using the ultimate product.

B. Supplier Selection

Acquisition of Commercial Of The Shelf
(COTS) products is normally part of
software projects. Software licenses,
supporting tools, and other products
are key ingredients for most software
projects. Selection of right products
should be based on criteria that
support project objectives and address
its constraints.

C. Training Approach

Team development is key objectives
for organizations to leverage the
competencies of their staffs to do
activities that are inline with objectives
of the organization. Training approach
can be self-study, formal class-room,
on-job training or workshops. The
selection of an approach will impact
acquired competencies and ability of
staffs to do their tasks.

D. Corrective Action

During Monitoring and Control of
project activities, the project manager
use measures to assess project status

against plan. Deviations are addressed
by corrective actions. When deviations
exceed certain threshold, corrective
action should be decided based on
formal process. The Project Plan
should have reference to the decisions
that will require corrective action
based on a formal process.

IV. DESCRIPTION OF DAR

The following diagram shows the
specific practices `of a formal decision
process based on the CMMI® DAR
process area.

Figure-3: Specific Practices of DAR

The text inside each box describes
process step, while the text to the
right is the output from performing
this step. Of critical importance is
establishing guidelines for practitioners
describing the decisions that require
the use of DAR.

Every step of the process can have
feedback to previous steps. This
feedback leads to refinement of
outputs from previous steps, especially
evaluation criteria. The need to refine
output of certain step only becomes
evident upon executing a following
process step.

Every step in previous figure
corresponds to a Specific Practice (SP)
of the DAR process area in CMMI®.
These are explained in the following

Establish Guidelines
for

Establish Evaluation
Criteria

Evaluate Alternatives

Select Solutions

Identify Alternative
Solutions

Select Evaluation
Methods

SP1.1

SP1.2

SP1.3

SP1.4

SP1.5

SP1.6

Guidelines for when to apply a formal
evaluation process

Documented evaluation criteria

Identified alternatives

Evaluation method

Evaluation results

Recommended solutions

Feedback is possible
from one step to
earlier ones

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 7 of 25

paragraphs.

A. Establish Evaluation Criteria

Evaluation Criteria is traceable to a
documented source and should ensure
buy-in of relevant stakeholders. The
rationale of selecting criteria should be
documented. Recommendation of
choosing evaluation criteria:

1. Simple criteria having most
critical components and agreed-
on by relevant stakeholders.

2. Criteria should be part of
process assets of the
organization and continuously
improved.

3. Input from expert should be
sought.

4. Weights should be aligned to
business objectives.

5. Organization Process Assets
and historical data should be
used.

B. Identify Alternative Solutions

The driver for identifying alternatives
is the Evaluation Criteria. When
considering alternative solutions, it is
recommended to consider the
following:

1. Critical few alternatives are
identified.

2. Techniques for alternatives
generation (e.g. Brainstorming)
can be used.

3. Organization Process Assets
should be used.

4. Bias in favoring certain
alternative should be
controlled.

5. Proposed alternatives are
documented.

6. Might need to revisit criteria
based on alternative solutions.

C. Select Evaluation Methods

Practically REVIEW is the most
commonly used Evaluation Method;
however, selection of a method
depends on the degree of clarity in
defining the issue and availability of
historical data. Examples of other
evaluation methods are Simulation,
Surveys, Cost studies, Engineering
Studies and Testing. Level of detail of
the method used should be assessed
regarding its impact on cost, schedule,
and risks. Combination of Evaluation
Methods can be used

D. Evaluate Alternatives

Evaluation Criteria may be revisited
based on analysis of results and
discussions. Simulation, pilots,
prototypes and modeling can be used
to analyze evaluation criteria, methods
and alternative solutions. Alternative
solutions may be revisited and new
ones are evolved. Evaluation Team
should agree on score to every
component of the criteria.

The evaluation process should be
repeated till alternatives test well. The
evaluation results should be
documented so that to have basis of
the decision

E. Select Solutions

Highest score alternative may not be
always selected. Final solution is
selected based on Risks Assessment.
Reason of selecting or rejecting
solutions should be documented and
become part of Process Assets.

V. CONSIDERATIONS WHEN

USING DAR

To get the desired benefits from using
DAR, it is recommended to:

1. Define the issue clearly and
early.

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 8 of 25

2. Involve right people.
Right people involved in the
process will generate valid key
alternatives. This will lead to a
solution that is in-line with
organization business
objectives and project needs.

3. Make organizational-wide
guidelines.

4. Have a defined process for
DAR.

5. Plan for DAR in the project
plan.

6. Monitor Cost-Benefit of using
DAR.
Cost of using DAR in a project
should not exceed certain
threshold, which is normally a
percentage of the project
budget.

7. Enhance Evaluation Criteria.
Evaluation criteria should be
improved from an instance if
using DAR to next one for a
similar situation. For example,
deciding on technical solution,
can contribute to revise
evaluation criteria from an
instance of implementation to
another.

8. Use Organizational Process
Assets.
This includes making analogy
with previous similar situations.
Then utilize applicable:

o Evaluation Criteria
o Alternative solutions
o Basis of deciding on

Selected Solution

VI.PERVASIVENESS OF DAR

DAR addresses formal decision
making, however, the project manager
always needs to make decisions in the
course of all of project activities. The
project manager may apply DAR
paradigm to decide whether a project
task has been completed or not.
Completion of any task requires DAR
type of thinking. A decision of

completion of any task is bound by
review and approval of its deliverables.

For example, the following figure
shows how DAR may be used
informally to decide the completion of
a certain project task.

Figure-4: Applying DAR informally

The work products involved in a
project task are equivalent to the
outputs produced from the specific
practices of DAR. This is high-lighted
in the previous diagram. Normally,
there is a review check list (act as
evaluation criteria) to decide whether
a task is completed or not. Base lining
or not of a work product acts as
alternative solutions.

VII. Conclusion

Decision Making is a management
practice. Software development
projects need to incorporate this
practice to reduce subjectivity, and
improve team work and overall
quality. DAR is a formal decision
making process that may be required
from many process areas; however,
certain situations are common in using
DAR. These situations include selection
of Design Solution and making
Corrective Action due to unacceptable
deviation.

Project Managers should apply DAR
informally in their daily activities to

Establish Evaluation
Criteria

Evaluate Alternatives

Select Solutions

Identify Alternative
Solutions

Select Evaluation
Methods

Baseline or no baseline

Review check-list

Review method
(Walk-through)

Execute Review
Process itself

Do not baseline till review
issues are resolved

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 9 of 25

make better and more consistent
decisions.

VIII. ACRONYMS

CMMI Capability Maturity Model

Integration
COTS Commercial Of The Shelf
DAR Decision Analysis and Resolution
EPG Engineering Process Group
GG Generic Goal
GP Generic Practice
OPAL Organization Process Asset

Library
PA Process Area
SG Specific Goal
SP Specific Practice

References:

[1] CMMI, Guidelines for Process

Integration and Product
Improvement. Mary Beth Chrissis,
Mike Konrad and Sandy Shrum.

Biography:

Sameh S. Zeid is with ITSoft, an
organization for providing off-shore
software services. Sameh manages
Process Improvement program that
will lead to higher maturity levels. He
has been involved with software
development and management since
1985. Sameh played various roles on
the technical and managerial levels for
establishing core business solutions. In
last one year Sameh has managed
Process Improvement Program that
accredited the organization CMM level-
3. Sameh has a B.Sc. degree in
Computer Science from Faculty of
Engineering and Post-Graduate degree
in Operations Research.

Feedback contacts

Feedback, comments and questions
are appreciated by the author.

Email:

szeid@itsoft.com.eg

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 10 of 25

Toward Egyptian Software Industry Series:
Egyptian Software Production Community

 By: Ramiz Kameel

OBJECTIVE

This article “Egyptian Software
Production Community” is the first
article of a series of articles “Toward
Egyptian Software Industry” that
concerns with the software industry
improvement in Egypt. The present
series of articles will not concern with
infrastructure that required from
community to push the software
industry, such as; competition culture,
basic educational system, or
governmental efforts for supporting
[1]. On the contrary, this series of
articles will concern with the internal
improvement of the software cycle of
production. The present article will
define and categorize the current
patterns of software production
processes in the Egyptian community,
and the different roles in it. Ideally,
the scope defining will be the aim of
this article.

INTRODUCTION

Any software production community
has three main objects that interact
together for producing software;
actors (or roles), processes, and
patterns of interactions. Actor plays
the driving role in the software
production community. In most cases,
one actor plays more than one driving
role in same time, for that the “Actor”
will be replaced by “Role”. Second
object, process is the mechanism that
is followed in software production.
These mechanisms have different
natures upon the community
characteristics and its relevant culture.
Pattern, or interaction pattern, is the
description of roles’ definition and their
relevant process or processes. In the

next sections, an adequate description
of the roles, processes, and patterns in
the Egyptian Software Production
Community (ESPC) will be presented.

ESPC ROLES

In this section, roles’ definitions
are presented based on the ESPC.
These definitions belongs roles only
regardless the definition of role
actor.

VENDOR ROLE

This role is responsible to receive
(not gather) the software
characteristic, functional feature,
and non-functional features. This
role is, also, responsible to design
software structure, develop, and
implement it. Sometimes, the
vendor role is responsible to
perform and follow-up the pre-
performed marketing and sales
plans.

CUSTOMER ROLE

This role is responsible to use the
software that produced to perform
the same manual or semi-
automated operations that are
done. Customer role leads the
software project toward building
libraries of defined functional
operations to feed the first level of
outputs.

BENEFICIARY ROLE

This role, also, is responsible to use
the produced software. But, this
role concerns with higher levels of

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 11 of 25

outputs and the performance of the
produced software. So, this role is
responsible to lead the software
producing process by a part of
functional features and non-
functional features.

ESPC PROCESSES

This section represents the main three
processes in ESPC. Definitely, each
process has the special characteristics.
In the present section, these
characteristics will be explored. No
interaction or upgrade relations are
bonding the different processes [2].

BUILDING PROCESS

Building process consists of
sequence of steps that finally
produce the required software.
According to present definition, the
building process is a process can
used for tailored software. The
steps of present process can be
divided to two categories of steps;
constructive steps, and re-
constructive/customized/adaptable
steps. So, the building process is
re-iterative process by that
definition.

CREATING PROCESS

Creating process is an invention
methodology to produce the
required software. In this process,
the producer develops the required
software according to predefined
requirements. In this process, the
iterative modifications of the
requirements are completely
finished in a stage before creating
the software, on contrary of the
building process that in it the
modifications occur in a later stage
after building the software itself.

MANUFACTURING PROCESS

Manufacturing process is a
complicated synthesis plan of
software production. This process
follows an existed plan of
production. A software product line
is a set of software-intensive
systems sharing a common,
managed set of features that
satisfy the specific needs of a
particular market segment or
mission and that are developed
from a common set of core assets
in a prescribed way [3].

ESPC PATTERNS

This section represents the main three
patterns in ESPC. Each pattern will be
represented by its dimensions
according to the active sharing roles in
it.

VENDOR VS. CUSTOMER/BENEFICIARY
PATTERN (BINARY PATTERN)

In this pattern, the customer plays
the same role of the beneficiary of
the software additional to his main
role, not the reverse. So, in this
pattern, the actor of role
(customer/beneficiary) gives the
priority to the customer role.
Actually, customer role plays the
main guidance role during the
software production phases. The
beneficiary role effect appears after
the finishing of the software
production. This needs a lot of
customization and re-
customization.

VENDOR VS. CUSTOMER VS. BENEFICIARY
PATTERN (TERNARY PATTERN)

This pattern represents the
equivalence effect of each role in
the software production process. In
this pattern, there is no role that
plays the part of another role. Each
role shares in the process by its
own inputs and expects its own
outputs to be satisfied.

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 12 of 25

VENDOR/ CUSTOMER/BENEFICIARY
PATTERN (UNARY PATTERN)

Unary pattern represents the one
role in the software production
process. In this pattern, the vendor
plays the all three roles. This
pattern represents the complete
cycle of the product line.

Discussion

The Egyptian Software Production
Community (ESPC) consists of several
members, software companies
(vendors), customers, and
beneficiaries of software. Those are
the main actors in the community.
Ideally, for precision, it is preferable to
define those members or actors as
roles. Significantly, they have an
obvious influence on the software life
in Egypt. On the other hand, one can
neglect the effect of any other role on
the software life.

According to the definitions of
processes and patterns, one can
observe the linear matching between
the present patterns and the present
processes. The unary pattern utilizes
the manufacturing process during the
software production cycle, in which the
software is produced according pre-
defined plan based on adaptable
marketing research [2]. The binary
pattern utilizes the building process in
which the software is built in iterative
sequence until the core of software
design doesn’t sustain any further
customization. The trinary pattern
utilizes the creating process in which
the software is created based on equal
influence from the three roles.

Unfortunately, there is no enough
statistical data represents the share of
each pattern in the ESPC. But
obviously, from experience in the
ESPC, one can notice that the binary
pattern (Vendor vs.
Customer/Beneficiary) represents the
greatest share in the ESPC. This

pattern consumes a lot time in
software production process due to its
iterative nature. In most cases, the
durability of the software is affected
due to the repeatable customization
processes.

In most cases of ESPC, the vendor
gives the priority to his role over both
other roles, in the unary pattern. This
can referred to the absence of real role
of quality and R&D in the software
production process [1].

One can appear the absence of the
gathering software feature role in the
ESPC. In ideal community, the
consultancy plays the role of gathering
software features (at least defining the
software scope) based on the
customer requirement and the
corresponding benefits.

Conclusion
Initially, the ESPC’s stakeholders are
invited to prepare a complete data
information about the software
industry in Egypt. This data
information should include the sharing
of each pattern in the software
industry sector. The binary pattern has
to be excluded from the ESPC to
improve the efficiency of the software
industry in Egypt.

The consultancy role has to be
established in the ESPC, to support the
beneficiary role beside the customer
role. On the other hand, the
consultancy role will play the
connecting link among the customer,
beneficiary, and vendor.

Manufacturing process and creating
process should be supported by the
stakeholders to be the main processes
in software production in Egypt. This
will need an establishment of several
procedures, methods and activities to
support this modification stage in the
ESPC.

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 13 of 25

Modification stage in Egypt can be
attained by emphasizing the role of
R&D in software industry, establishing
the proper Egyptian standards, and
following a proper methodology in the
software process improvement.

Future Work

As mentioned before this article is the
first article in the series of articles
“Toward Egyptian Software Industry”.
The next articles will concern with the
established methods to improve the
Egyptian software industry. Next
articles will concern with Software
Process Improvement SPI.

Acknowledgement

The author is grateful to, Eng. Ahmed
A. Hday, for his valuable
recommendations.

References

[1] Meer Hamza, 2004, How to achieve

the expected quality in our
software industry, Egypt-Spin
Newsletter, SECC, Issue 7, July –
Sept. 2004, Pages 9-10.

[2] Ahmed A. Hady, Chief Architecture,
Egyptian Software and Systems,
Prima Soft, Private Communication,
2005.

[3] Clements, Paul and Northrop,
Linda. Software Product Lines:
Practices and Patterns. Boston,
MA: Addison-Wesley, 2002.

Biography

Ramiz Kameel is SPI Consultant of
Egyptian Software and Systems; Prima
Soft. Author holds a Ph.D. in
Engineering. Author is SPI Consultant
of Information Technology Institute -
ITI.

Feedback Contacts

Feedback, comments and questions
are appreciated by the author.

Email:

rekameel@primasoft.com.eg

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 14 of 25

Software Testing Techniques Series:
XUnit Testing Framework. [Part 1]

 By: Omar Kamal

Introduction.

In previous articles the author
explored Control Flow Testing (CFT) as
one of the testing techniques used for
testing at different levels. The
technique is used to design test cases
which should be followed by test case
execution. This article will introduce
xUnit Testing Framework as one of
the most popular frameworks
explaining its main features.

Unit test frameworks.

Unit test frameworks are software
tools to support writing, running, and
result-reporting unit tests. In a test
driven approach, implementation and
test code are developed concurrently
in a continuous test-code-test cycle.
As figure 1 illustrates, an Object under
Testing (OUT) is invoked within a
testing environment together with its
test driver. Test cases are written in
the test driver, and each test case
excites the OUT and examines its
behavior. The expected behavior is
compared with the actual behavior and
the result is stored for analysis and
tracking purposes. The process
continues till all test cases are
executed. The test driver is maintained
and kept for regression testing.

Challenges facing unit test
frameworks.

The following are the most important
challenges facing the development of
any test framework:

1. Compiling and building unit test
drivers should be as easy as
their corresponding objects
under testing.

2. Any software system is

composed from various
subsystems, which also include
a number of objects that may
be tightly coupled in terms of
interaction. A challenge remains
to find a way to isolate the OUT
from all other components on
the system.

3. The test framework should

facilitate isolation of test cases
from each other, which is
commonly known as “test
decoupling”?

4. Most of the times individuals

responsible for carrying-out the
regression test are non-
programmers. Accordingly, it
would be helpful if the test
framework offers a simple and
easy way for those individual to
run the developed regression
suite. The best testing
framework will provide “an un-
intended automatic regression
execution environment”.

xUnit test framework family.

In 1999 Kent Beck developed a unit
test framework for the Smalltalk

Testing Framework

Test Driver
Test SetUp()
Testcase 1()
Testcase 2()

…
Testcase n()

Test TearDown()

Object
Under

Testing
(OUT)

Figure 1

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 15 of 25

language that was simple and easy to
integrate with the production code.
Later, Erich Gamma ported SUnit to
Java, creating JUnit. Next a port for
C++ language was developed and was
named “CppUnit”. Almost every
commonly used language has its
corresponding unit test framework for
example:

o NUnit for .Net C-Sharp
o PyUnit for Python

Every now and then, new ports are
developed for more languages based
on the same model. These
frameworks are known as the xUnit
family of tools. All are free, open
source software.

How do “xUnit frameworks” face
the previously stated challenges?

1. Test drivers are developed as
simple classes that inherit, use,
or extend some important basic
functionalities from the
underlying framework. Test
drivers are compiled and linked
as any other source code file in
the system. In doing so, it is
easy to develop the source
code together with its driver at
the same time.

2. The Test Driven Approach

(TDD) requires that you follow
a test-code-test cycle. For
example, a developer may
receive a unit description
document that specifies a unit
to be developed. He/She starts
by developing a test case that
verify a specific part of the unit
he/she intents to code. Next,
this initial test case is executed.
The test case should fail
because the piece of code it
tries to verify is not yet
implemented. Now, the
developer knows that the test
code compiles and runs and is

ready to verify the code. Then
the effort is directed towards
implementing the code. After
the compilation process is
successfully finished, the
corresponding test case is
executed again to verify the
implemented code meets its
specification. The test execution
result may spot a defect in the
code or in the test case itself.
The implementation and test
code are refined again to make
sure bugs are removed from
both of them. Finally, a new
piece of code is added through
this cycle “test-code-test” till
the implementation of whole
unit is finished with its
corresponding test driver.

3. The OUT isolation problem

appears when we try to isolate
an already developed concrete
class from its dependences in
the system and develop its
corresponding test driver,
which may require interface re-
work or introducing hooks,
etc…. In contrast the TDD
approach enforces concurrent
development of the
implementation and test code
which illuminates the isolation
problem early in the
development cycle.

4. The xUnit framework execution

scenario are carried as follows:

o Test Setup
o Test Casen
o Test Teardown

Test setup is carried out prior
to any test case execution and
the test teardown is carried out
directly after it. xUnit
frameworks offer a way to
automatically retrieve a test
case by test case, while
padding it with setup and
teardown calls. Enough test

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 16 of 25

case isolation can be achieved if
the OUT instantiation and
initialization is carried out in the
setup, and the OUT destructing
and termination is carried out in
the tear down.

5. At the time the developer

finishes the unit under
development a test driver is
also finished and stored under
the configuration management
platform. xUnit frameworks
offers a number of ways to
execute those test cases. Test
driver execution can be done
through command line,
Graphical User Interface (GUI),
or scheduled scripts.

xUnit framework extensions.

The community effort wasn’t only
limited to writing ports for more
languages but it includes developing
add-on tools that extend the
functionality of existing unit test
frameworks. Example of such
extensions is listed here.

1. XMLUnit

An xUnit extension to support
XML testing. Versions exist as
extensions to both JUnit and
NUnit. This is covered in Chapter
10 of this book.

2. JUnitPerf

 A JUnit extension that supports

writing code performance and
scalability tests. It is written in
and used with Java.

3. Cactus

A JUnit extension for unit testing
server-side code such as
servlets, JSPs, or EJBs. It is
written in and used with Java.

4. JFCUnit

A JUnit extension that supports
writing GUI tests for Java Swing
applications. It is written in and
used with Java.

5. NUnitForms

An NUnit extension that
supports GUI tests of Windows
Forms applications. It is written
in C# and can be used with any
.NET language.

6. HTMLUnit

An extension to JUnit that tests
web-based applications. It
simulates a web browser, and is
oriented towards writing tests
that deal with HTML pages.

7. HTTPUnit

Another JUnit extension that
tests web-based applications. It
is oriented towards writing tests
that deal with HTTP request and
response objects.

8. Jester

A helpful extension to JUnit that
automatically finds and reports
code that is not covered by unit
tests. Versions exist for Python
(Pester) and NUnit (Nester).
Many other code coverage tools
with similar functionality exist.

The upcoming article

Next article (Insha’Allah) will examine
the xUnit articture in more details. The
article will explain how to write simple
test cases and to execute them.

References

[1] Paul Hamill, "Unit Test Frameworks
", 1st Edition, O'Reilly, 2004.

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 17 of 25

Biography

Omar Kamal, 7 years of experience in
wireless telecommunications software
development, training, and software
quality management. Working as a
senior software engineer in QuickTel
Research and Development, used to
work with Lucent Technologies,
Hewlett Packard, and Etisalat. He holds
a bachelor’s degree in
telecommunications engineering from
Cairo University, and master’s degree
in business administration from City
University. Also he is a “Certified
Quality Manager” by the American
Society for Quality.

Feedback contacts

Feedback, comments and questions
are appreciated by the author.

Email:

omkamal@yahoo.com

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 18 of 25

Negotiations and Project Management Real Experience

 By: Ahmed Abd El Aziz

Introduction

One of wonderful training courses I
attended with SECC was Negotiation
Skills course offered by Dr. Hesham
Sadek. During the course and in the
following few days I had a difficulty to
map what I learned in the course to
my work. I thought that it is directed
mainly to sales people. Few days later,
I found that I need what I learned in
the course and I use it in many
situations I never thought about
during the course.

In this article, I will try to share with
you my experience in applying what I
learned in that course. I will mention
some of the points and tricks we
learned and how I applied – or did not
apply them – in the real world.

Suggestions to Improve
Negotiation Skills

Think … BATNA

BATNA stands for (Best Alternative To
a Negotiated Agreement). BATNA has
five sequential steps:

1. Preparing and Planning.
2. Definition of Ground Roles.
3. Classification and Justification.
4. Bargaining and Problem

Solving.
5. Closure and Implementation.

Details of BATNA is out of scope of this
article. But what is interesting here is
that the bargaining itself is the fourth
step preceded by here preparation
steps. We do not just start negotiation.
We have homework to do first. For
example, if the project manager wants
to acquire more resources to his

project, he has to prepare for the
negotiation with the HR manager. He
must not ask for twenty programmers
and wait for the HR to assign them.
However he has to know first how
many programmers may be available
then try to negotiate about them. This
makes the negotiation shorter and
more effective.

Begin with a Positive Overture

Again to the previous example. Let’s
think about what happens when the
project manager insists on getting 20
programmers. Most probably he will
end with none. When the HR finds that
he can give him only 3 programmers,
he prefers not to give him any
programmer at all as it seems that it
will not benefit.

Address Problems, not Personalities

In many situations we mix between
the problem and the person we are
bargaining with. If I do not like him, I
consider him as an enemy, regardless
whatever he says. Everything he says
is wrong and he aims just to win or
gain personal benefits regardless what
happens to me. I suspect every word
he says. Instead of emphasizing on
reaching a solution, I attack him and
forget the main problem. This is
completely wrong. In any situation I
did this, I lost the negotiation.
Otherwise I have to deal with others
and appreciate that in some situations
we agree and in some other situations
there is a conflict between us.

Emphasis Win-Win Solution

Before the course I heart this
expression many time “Win-Win”.

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 19 of 25

In the course I learned a very
important thing that is related to Win-
Win. It is called ZOPA (Zone Of

Possible Agreement). Let’s have a look
at the next figure:

We have a seller who wishes to sell his
car by $7,000. However if he sells it by
$4,500 he is still satisfied. This is
represented by the blue area in the
figure.

The buyer wants to get for free, like all
of us. However he can pay up to
$5,000. This is represented by the
green area in the figure.

ZOPA is the gray area which lies
between $4,500 and $5,000. Any deal
within ZOPA is a Win-Win deal. The
point is that you have to make sure
that the deal is in ZOPA. Do not make
it Win-Lose because if the other party
loses, expect that there is some trick.

Sometimes I use the ZOPA but with
time, not money. In most of the cases
I negotiate the delivery date with the
customer, and sometimes even with
senior management. I know that
whatever delivery date I say, he will
try to shorten it. So I have to deal with
that. Few hours before writing this
article, I told my boss that some tasks
will be finished after two months. He
insisted they must be finished within
one week. Finally we agreed to finish
after one month!

Create an Open and Trusting Climate

Again, do not deal with the other as an
enemy. I have an interesting story in this
point. Some day I had a meeting with
two guys from the customer’s side. One
of them is the project manager and the
other one is a technical guy. They said
they need a FAQ module. I told them
that we need about three weeks to
develop that module. The technical guy
said that it could be done within few
days as it is just a simple database
application. I did not like what he said
and started – in aggressive way – to
discuss some of the details in the FAQ
module. Finally he agreed that there are
a lot of detail and we actually need more
time, but I have just started to build a
bad climate. The project manger trusts
his technical gay at the end. If I do not
get this technical guy at my side, I lose
at the end. I stopped acting the same way
later on. If I want to have him in my
side, I start explaining my point by
saying “I will do this in the way X
because this is the best way as you
know”. In this way he becomes in my
side and in most cases will not resist me.

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 20 of 25

Must Conclude a Deal

This point I was missing many times. I
spend hours in meeting and
discussions, then finally we get tired
and want to leave without concluding
what we agreed. What generally
happens is misunderstanding and
completely different expectations.

It is strongly recommended that at the
end of any meeting, regardless it is for
negotiation or something else, to
conclude the meeting in very few
minutes at te end.

Preparation for Negotiation

Analyze Your Audience

After all we are dealing with humans.
We have to analyze them to get what
we want. We have to know what are
their interests and priorities. We need
to know about their culture and
behavior.

As an example I was working in a
project with a very hard and near dead
line. There will be a celebration in the
client’s country – in the gulf area –
and a prince will be in the celebration.
The client wants to do – as usual –
everything in no time before the
celebration. I knew that time is the
most important factor for the client at
that moment. I used this many times
when we were negotiating about the
requirements. It is not enough to say
that it just takes six weeks to finish.
Simply say “Yes I can do it, but do not
expect me to finish before the
celebration”. That was the magic word.
Whenever I say it, I get what I want.

Another interesting point I learned in
the course. Part of our culture in the
Arabic area in general is that we do
not like to deal directly. Most of the
time we prefer indirect ways. In one of
the negotiation meetings about the
project I told my boss there are three

constraints; time, cost, and quality.
Which one has the lowest priority? He
said, “All of them are high priority”. I
was wrong because I went direct.
When I went indirect, I said “Ok, we
can create the menu the client asked
for, but we will ignore the search
service at the moment”. He said “no
problem, we do not need it now”.
However we both win. He got the
feature that is of much importance to
him; the menu instead of search; and
I made the faster task; I need just half
a day to develop the menu while I
need two weeks to develop the search
service.

How Can You Best Arrange Your Ideas

During preparation for negotiation, write
down your ideas in equal manner. Later
on review your ideas and try to arrange
them. This way you will mwke sure you
do not miss anything.

Format for “Yes” and “No” Message

People like who says “Yes” and do not
like who says “No”. But as a project
manager I have to say no in many
times. How can I do this without losing
my customer or my management? In
the course I learnt that when I want to
say yes to something, I say it first
then I explain why I say yes. When I
want to say “No”, I say it at the end or
even I do not say it explicit at all. As I
said in a previous example, I did not
say to the client “I will not do this
feature”, but I said, “This feature takes
three weeks to be implemented. It
cannot be finished before the
celebration. Do you think we have to
finish it even if we missed the
celebration?” Review my words again.
The word “No” does not explicitly
exist. But actually I said “No, I will not
do it”.

However you have to pay attention to
saying “Yes”. In negotiation, If you say

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 21 of 25

“Yes” quickly for something, this
means you gave it for free for the
other party. It is now out of
negotiation. Now he will start to
negotiate something else. Be careful
not to simply leave something to the
other party without getting something
in advance. Some negotiators
negotiate hardly about something they
do not want, and in the suitable
moment they leave it and ask for the
thing they have in their hidden agenda
and make the other party feel that he
gets the big peace of cake. However
they got exactly what they want.

That is not all about negotiation. I
even did not go deeply in what
negotiation is. I just wanted to show
you some of the benefits I got from
the course and how I applied them in
my career.

Finally I would say thank you to Dr.
Hesham Sadek for this interesting
course and to SECC for their interest.

Biography

Ahmed Abd El Aziz, has more than
eight years experience in the Software
Development field. He is now a Project
Manager in HARF Information
Technology. He is certified as PMP and
he has a B.Sc. Of Engineering from
Cairo University and a Diploma in
Computer Science and Information
from Cairo University, Institute of
Statistical Studies and Research
(ISSR).

Feedback Contacts

Feedback, comments and questions
are appreciated by the author.

Email:

aaz@harf.com

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 22 of 25

PSP, the CMM for Single Programmer

 By: Ahmed Hammad

In this short article, I will try to give a
simple overview of the PSP as we
practice it, what I am describing here
reflects my understanding and my
practice. If you want formal articles
that describe what PSP is, please refer
to the references section in this article.

PSP is CMM level 5 applied to a single
programmer. In other words, how a
single programmer could apply
engineering discipline on just himself. I
really like this approach, as it comes to
basics, the single programmer who is
writing source code for the system.

Many small corporations in Egypt have
small projects that a single
programmer develops from start to
end; such projects exist even in
medium corporations, especially if they
are using modern high level
languages, modern development tools,
and their large reusable code libraries.
For the above reasons, I feel happy
with the PSP training, as we are again

going to basics and speaking
practically; this could help us in our
corporation to develop better.

In a nutshell, PSP is a way to develop
software using a defined process. The
process describes how to collect
quantitive metrics regarding
performance and quality; and how to
find ways to improve continuously.

The magic of PSP formal training is
that, we practice it through 10 real
programming assignments; some of
them are not trivial. So, the PSP
training can't be taken by non
programmers.

The relation between PSP and
CMM
In Fig-1, we show the CMM levels and
mark by "*" all key practices that at
least partially are covered by PSP. It's
clear that a large percent of CMM key
practices are covered in PSP.

Fig-1 (from "A Discipline for Software Engineering by Watts S. Humphery")

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 23 of 25

PSP Levels:

As everything in life is developing
incrementally, so is the PSP: We
started with PSP0, PSP1.0, PSP2.0 and
then PSP3. Every new process version
introduces new changes in the
process. This incremental approach is
really natural; I don't expect any

success if someone is going to practice
PSP2 or PSP3 directly.

In Fig-2, we show the levels of PSP, in
each level, new concepts are
introduced and a new programming
assignment is given to practice the
new concepts in actual programming
work.

Fig-2 (from "A Discipline for Software Engineering by Watts S. Humphery")

PSP0: The Baseline Process:

The baseline is simply what we already
do in developing software, getting
requirements, creating design, writing
code, and testing; but you would
record all the time spent in each phase
and would record all the defects you
found and how much time it took to fix
them.

In the Postmortem report (a report
you write at the end of every
assignment), you count how much
defects are injected and removed from
each development phase. Actually
PSP0 is the basic training on using a

defined process and writing basic
reports.

We started the first assignment using
paper forms which were tedious but
helped us to concentrate on the new
concepts rather than to use a tool that
could distract us from the new
concepts. In later assignments, we
used a nice spreadsheet that is
provided by the instructor.

In PSP0.1 we start the basis to
measure size by following a coding
standard. We also used the PIP
(Process Improvements Proposal)
which is a structured document to

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 24 of 25

record our process problems and
improvements suggestions.

PSP1.0: The Personal Planning
Process:

The size estimation OLOC (Object
Lines Of Code) is used and compared
to the actual. We use a size template
to write all objects (Classes in C++
and Java) and how much functions will
exist in each object and the expected
lines of code per function.

Now with a history you can just
estimate OLOC and let the
spreadsheet calculate the expected
time by using statistical linear
regression once there was a
correlation [linear relation] between
your old LOC and time in previous
projects. Of course the estimation will
be based on your past data, so you
should make sure to record consistent
and accurate data to get quality
estimates. The spread sheet will also
compute automatically the time spent
in each development phase based on
your past history.

This was a great step, I don't have to
estimate time anymore, I will just
estimate size using familiar Object
Oriented techniques and then estimate
the lines of code. The time is
automatically calculated using
statistical linear regression.

Also in this phase we learn to write
test report to record all test cases
used to verify the program is correct.

In projects that span many days or
weeks, task planning and schedule
planning will be a critical issue. First
you estimate size and time required
(task planning), then make a
schedule. The schedule will allocate
already estimated tasks to real
resources. The schedule tracking is so
important, and a corrective action is
necessary once a plan slip is detected.

PSP2: Personal Quality
Management:

At this step, we already have a very
good data about our defects, we
analyze defects carefully and devise
several approaches to minimize them:

Reviews:

Using structured design review and
code review that is based on a
checklist, we can greatly reduce
defects even before the first
compilation and test.
In order to improve the review
effectiveness, a peer review is
introduced. As we know, we get used
of our mistakes, so that we no longer
see them. Other minds/eyes will easily
detect many of these defects.

Design process:

Through the focus on how to verify the
completeness of a design, not
necessarily how the design it self is
made, verifying the design
completeness will eliminate a large
source of defects. Actually design
completeness check can be done on
many phases, like requirements; sure
it will be ideal to have requirements
completeness criteria before
development.

PSP3: A Cyclic Personal
Process:

Using PSP2 is perfect in small scale
projects, but what if you have a large
project? The idea is to divide the
project into many PSP2 projects, so
each cycle of development is based on
high quality previous cycles. If the
previous PSP2 cycles are badly done,
the test will be a complex task, so we
focus on doing PSP2 completely in
each cycle.

Egypt-SPIN Newsletter Issue 10, Apr. – Jun. 2005
Sponsored by SECC Page 25 of 25

Tool Support, the Dashboard:

Of course tool support will help us to
make following the process easier, I
tried to use process dashboard as
advised by our instructor Dan Roy, and
find it helpful. I encourage every
trained PSP to use it, however I think
it will be complex and unintelligible to
anyone who is not familiar with the
PSP through formal training or at least
with the help of a formal PSP
programmer.

Finally, we started to use PSP in-
house, but we still have no concrete
experience until now, I hope that
anyone who would have that
experience to share it with us.

References

[1] The Complete PSP Book: A
Discipline for Software Engineering by
Watts S. Humphery

[2] The SEI PSP page
http://www.sei.cmu.edu/tsp/psp.html

[3] PSP Body of Knowledge
http://www.sei.cmu.edu/tsp/psp/bok/i
ndex.html

Biography

Ahmed Hammad is a project
manager in IESCOM, and has a twelve
years of experience in software
engineering and management.

Feedback Contacts

Feedback, comments and questions
are appreciated by the author.

Email:

ahmjv@yahoo.com

