

Egypt–SPIN Newsletter

Issue 9, Jan. – Mar., 2005

Sponsored by SECC

Egypt-SPIN Newsletter Issue 9, Jan. – Mar., 2005
Sponsored by SECC Page 1 of 20

Feb. 2005 to May 2005, Personal Software Process (PSP) and Team Software
Process (TSP) training track is conducted in Egypt and is sponsored by SECC with
collaboration with USAID/ICT. For more details, see the next page.

From the Editor (Ahmed S. El-Shikh)

Welcome to our 9th issue of Egypt –SPIN newsletter. In each issue we are trying to put together
relevant information in the form of articles and recaps from the previous 6 months events hoping
to provide our members of Egypt – SPIN with information to support their current interests.

In this issue, you can find practical experience in process improvement (1st article), completing
the software testing tutorial series (2nd article), and hot new topic in process improvement (3rd

article).

Eng. Reem El Ansary shares her experience in software process improvement in ITWorx
with the community. She gives important guidelines and some lessons learned.

Eng. Omar Kamal completes his series about software testing techniques. He gives the
second part of the control flow testing techniques tutorial.

Eng. Ahmed El-Shikh introduces the Six Sigma breakthrough improvement methodology called
DMAIC as the first article in his new series about “Metrics-Based Process Improvement
Series”.

We hope we succeed to give you an idea about what is going in our community. Please write to
the editor your comments about our progress. We always ask you to submit short articles for
publication that deal with your experience in defining, developing and managing software efforts
as well as process improvement experience. Remember that our goal is to encourage an
interchange between our readers. You can email spin@secc.org.eg or el_shikh@sas-sys.com

Egypt-SPIN Newsletter Issue 9, Jan. – Mar., 2005
Sponsored by SECC Page 2 of 20

PSP/TSP Training Track in Egypt for the First Time.

 By: the editor

With participants from 20 IT companies in Egypt, the Software Engineering
Competence Center (SECC) in collaboration with USAID/ICT program had
conducted a training track for the Personal Software process (PSP) and Team
Software process (TSP) for the first time in Egypt.

The PSP/TSP training track is delivered by the Software Engineering Institute (SEI)
and instructed by Mr. Daniel M. Roy. Daniel is the president of the Software
Technology Process & People Inc. (STPP). He has around 38 years of experience in
the software industry in many fields such as CMM, PSP/TSP, Risk Assessment, Real
time systems development methodologies, software measurement, metrics-based
improvement paradigms and human aspects of software techniques (MBTI and P-
CMM). He also has a lot of publications in the field of CMM, CMMI, PSP/TSP, Formal
Inspection and eXtreme programming (XP).

The training track contains four courses and one executive strategy seminar. The
track is delivered twice on two rounds; each has participants from 10 companies.
The first round started in February, 2005 and will end in April, 2005. The second
round will start in April, 2005 and will finish in May, 2005.

The executive strategy seminar is a two full day’s seminar that focuses on giving
an overview on the PSP/TSP from different perspective. It starts with the strategic
issues in the software business, goes through the common software production
problems and highlights the benefits from introducing PSP/TSP to the company.

PSP for Engineering I: Planning 5-days course and PSP for Engineering II:
Quality 5-days course are two courses, which form the heart of the track. They
cover the main aspects in the PSP such as size measurement, proxy-based
estimation and process measurement. They also conduct some advanced aspects
such as design process, design verification, scaling up to TSP and integrating PSP
with TSP. The attendance of these courses should plans to spend around 120 hours
to complete both courses plus course assignment, pre-reading and post-class
homework.

Managing TSP Teams is an important 3-days course that focuses on some
managerial aspects regarding coaching TSP team such as TSP launching process and
working process. It helps the project mangers, team leaders to understand their
roles in applying PSP/TSP in the organization.

Finally, the 2-days course called Introduction to PSP. It gives a good overview for
any role in the company that will be in contact with the TSP team such as test
engineers, technical writer and other non-software engineers. The course covers the
PSP framework, the personal process, measurement aspects in PSP and finish with
and introduction to TSP.

By conducting this training track, the quality improvement efforts sponsored by SECC
in Egypt has been focused on individual’s skills improvements beside the overall
company maturity level improvement. Hope that these tracks provide a good
leverage for the software industry in Egypt.

Egypt-SPIN Newsletter Issue 9, Jan. – Mar., 2005
Sponsored by SECC Page 3 of 20

Table of Contents

ITWorx Improves its processes …………………………………………………………………………………….4

Software Testing Techniques Series:
Control Flow Testing Tutorial. (Part 2...7

Metries-Based Process Improvement Series
Let Us Discover another Buzzword "Six Sigma"………………………………………………………….14

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 4 of 20

ITWorx Improves its Processes

 By: Reem El Ansary

About ITWorx

Founded in 1994 and privately held,
ITWorx is a professional IT services
firm focusing on the development of IT
solutions for Global 2000 companies,
and custom application development
for some of the biggest names in the
software industry. ITWorx is a
Microsoft Gold Certified Partner, an
Oracle Partner, an IBM Business
Partner, in addition to being CMMI
Level 2 and ISO 9001 certified.

Lessons Learned

There is no need to say why ITWorx
seeks process improvement or the
added values of process improvement.
The journey of process improvement
at ITWorx started in 2000. Before that
the size of the company was too small
(around 30 employees) so the
performance depended mainly on the
company’s heroes not on an
organization defined system.

Throughout the journey of ITWorx with
process improvement we have learned
a number of lessons that we would like
to share with others to help them
avoid our pitfalls.

The lessons can be categorized into
three areas:

o Organization management
o Process definition
o Process execution

Organization Management

The organization structures and the
senior management commitment
affect the achieved level of process

improvement. Once ITWorx decided to
start the process improvement
journey, the following activities took
place:

Selecting an Executive Sponsor

Start with the CEO and work
down. Having the right sponsor of the
process improvement project may be
all that is needed. After all it is often
not “what the project can achieve”
but “who wants it to achieve” that
counts. At ITWorx, the Managing
Director was the process improvement
sponsor that facilitated a lot
throughout our decisions and
prioritization.

Restructuring the Organization

For sure, process improvement
activities need a dedicated team and
some organization restructuring.
ITWorx restructured the organization
chart to reflect the need for the
process improvement initiatives. Three
main groups were added to the
organization chart: the Software
Engineering Process Group (SEPG), the
Software Engineering Measurements
Group (SEMG) and the Quality
Assurance group. The three groups
report directly to the CEO.

Identifying the Goal of Process
Improvement

One of the main goals of ITWorx was
to build a resilient company. The way
we see this goal achieved is to go for
process improvement. The main goal
was not merely to achieve CMMI Level
2. Achieving a certain level is only a
way to evaluate how the process
improvement effort is progressing.

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 5 of 20

Building Different Communication
Channels

Effective communications channels are
implemented to build stakeholders’
commitment to the process
improvement project and to the new
processes. The objectives of these
channels are as follows:

o Build acceptance and ownership
of the system across the
organization and the business
units.

o Build commitment to the
system.

o Sell the benefits of the system.
o Manage users’ expectations and

information needs.
o Provide information on available

support and resources.
o Provide information about the

system to the impacted
audiences and obtain their
input.

o Reduce uncertainty and fear of
the new technology and
processes.

o Develop a framework to
coordinate all communication
efforts.

o Ensure that consistent
messages are delivered to
stakeholders at all levels and
that decisions, events and
activities are communicated in
a timely manner.

o Make communications an
integral part of the daily
activities of the project’s team.

o Prepare a feedback channel
from employees on the new
system.

Process Definition

On the level of the process definition,
ITWorx was able to define its own
processes through forming Technical
Working Groups (TWG) for defining
each process. Each TWG is responsible
for making a gap analysis between the

current best practices that are already
followed in the company and the CMMI
process guidelines. Then the TWG has
to define a process that make use of
our best practices and at the same
time conforms to the CMMI model.
Through the processes definition we
have learned several lessons that can
be summarized as follows:

More Involvement in the Process
Definition

Practitioners should be involved in
defining the processes for several
reasons. First, this way you are most
likely to have their buy-in for the new
way of the world. Second, because
they are the real resources who know
the weaknesses and strengths of the
existing best practice or process.

Process Evolution

One of the most pitfalls that we went
through was that we were always
seeking perfection in defining a
process. Therefore, we used to spend
so much time in defining processes.
We have reached that it is better to try
to pilot a simple process and then
evolve it by time. On defining a
process, ITWorx usually takes into
consideration the capability of the
resources that will be performing it
and the time constraints that may face
them. The supporting tools needed for
the process execution should be
defined as well, to help the resources
carry out their jobs successfully.

Setting a Priority for the Process

CMMI as a quality model should give
you guidelines on the processes that
you need to look at but the priorities of
defining these processes should be
derived from the business needs. The
resources should feel the pain they
face of not having a certain process to
guide them in certain activities in order
to follow the newly defined process.

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 6 of 20

Tailoring a Process

No standard process can be applied to
all types of projects. Tailoring
guidelines should be defined for each
process. Quality Assurance auditors
should understand the process very
well in order to judge whether this
tailoring is acceptable or not.

Process Execution

Executing processes is the most
difficult part of the process
improvement cycle. Successful process
execution needs the resources to buy-
in together with management
commitment and client awareness of
the importance of internal processes.

Process Pilot

Always try to pilot any new process
before deploying it on the whole
company in order to get the feedback
from the pilot project and measure its
effectiveness. The selection of the
project to be used to pilot the new
process should be wise enough in
order not to affect the project itself.
Listed below are the criteria for
selecting a pilot project:

o The deadline of the project is
not critical to the client.

o The effort estimate of the

project includes sufficient
contingency factor.

Process Training

Before the piloting or the deployment
of any process, training sessions
should be conducted by the TWG,
which previously defined the process,
to all the resources who are going to
carry it out.
Process Measurements

The effectiveness of any process
should be measured, to check whether

the newly deployed process affected
the software life cycle positively or
negatively. At ITWorx, we measure the
progress of projects before applying a
certain process, and then measure
their progress after applying the new
process.

Feedback Channel

A feedback channel should always be
open for the practitioners to provide
their feedback regarding the processes
to the Process Improvement team. At
ITWorx we created an e-mail account
for the process improvement team
where users can use to send their
feedback on any aspect of the
processes.

Biography

Reem El Ansary, the Quality Manager
at ITWorx since 2000, is responsible
for the quality assurance and the
process improvement. Reem
graduated from the AUC with CS major
& Business Administration minor in
1992. Before joining ITWorx Reem was
a Technical Team Leader at Saudisoft.

Feedback Contacts

Feedback, comments and questions
are appreciated by the author.

Email:

reem.ansary@itworx.com

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 7 of 20

Software Testing Techniques Series:
Control Flow Testing Tutorial. (Part 2)
 By: Omar Kamal

Previous Article Summary:

The previous article introduced the
Control Flow Graph (CFG) as one of
most important techniques used in
software testing at its different levels.
The way the CFG is developed was
explained in details together with
different coverage criteria. This article
will continue to demonstrate the way
test cases are developed from the
selected paths, how to convert the
CFG to another representation that
allow the testing process to be
automated, and finally how to develop
an infrastructure for the automation
process. Note that it is hard for
readers how didn’t read the first article
to recognize technical concepts and
terms in this article. For this reason, I
encourage readers to carefully read
the first article.

How to generate test cases from
the CFG:

After selecting paths that satisfy any of
the criteria mentioned before we write
down the paths in a paper in order to
find external inputs that force each
path to occur. This process is called
path sensitization. The set of input
variables associated with a certain
path is called an input test vector.
Input test vectors together with their
corresponding Path-Ids are entered in
a spread sheet. The analysis process is
repeated again for each path in order
to predict expected outcomes. When a
path is selected the set of outcomes
that cross the boundary of the
component under testing is called the
output test vector for that path. Again,
output test vectors together with their

corresponding Path-Ids are entered in
a spread sheet. Doing so, we have the
complete data that define all test cases
needed to meet the selected coverage
criteria. The following section will
demonstrate the path sensitization and
outcome prediction processes based
on the previous article’s case study.

Path sensitization and outcome
prediction for room reservation
example:

Figure 1 represents the requirements
for the software application that we
intend to test. We will choose strong
coverage criteria (P∞) to govern the
path selection process. Note that there
is a non-deterministic loop between
node C4 and C5. For simplicity, we will
select a path that covers this loop once
and another path that never pass this
loop. Loop testing techniques are out
of the scope of this article. Further
information about loop testing can be
found in [BEZ1, BEZ2]

Figure 1: Control Flow Graph.

All combinations of paths are:
1. E1,S2,P2.1,X
2. E1,S2,P2.0,X

E1 S2

C4

X

Invalid Username

UN & PSWD
Are Valid

Check username &
Password validitiy

Request
Schedule?

C6

C5

Yes

No

User close the
application?

No

Yes

Data valid?

C8
Yes

No

No

Exit Node

Entry Node

Request
Approved?

P9

P10Yes

+ve Ack

-ve Ack

P2.1

P2.0Invalid PSWD

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 8 of 20

3. E1,S2,C4,C6,C8,P10,X
4. E1,S2,C4,C6,C8,P9,X
5. E1,S2,C4,C6,X
6. E1,S2,C4,C5,X
7. E1,S2,C4,C5,C4,C5,X

We won’t develop test cases for all
paths due the limitation of the article
size. Let us select path 3 and develop
its corresponding test input/output
vector for the sack of demonstration.

Input test vector for path 3:

o User enters a valid username &
password.

o User request Schedule.
o User enters valid request data.
o The administrator approves the

user’s request.

Output test vector for path 4:

o The user should receive a
positive acceptance
acknowledge.

It may seam that by developing
input/output test vector the test
design process has reached its end.
This is seldom true, there are cases
where certain test cases has no
meaning in the real world or even can
never occur physically. It is required to
filter out those test cases before
starting the test execution phase.

Removing path redundancy and
contradictions:

Sometimes, a path can never occur
because two or more of the nodes can
never exist in that specific path (node
contradiction). Similarly there are
cases where the existence of node A in
a certain set of paths limits the choices
for a following node B. For example, if
a person has never been married
(Condition A = never married) his/her
(number of childrens should be limited
to zero). Those situations generally
occur when modeling large problems.

Therefore, one should examine the
dependency between nodes carefully.

Test execution

The only left task is to put the testing
process into action by developing the
test execution environment. In
general, there are two choices:

o To develop the test code
responsible for inserting input
test vectors, fetching output
test vectors, comparing actual
output with expected output,
and finally reporting the result.

o To use commercially or 3rd
party free tools that do the
same thing for us.

A need for another representation
for the model

Using the CFG in visualizing the code
and developing test cases is very
useful. In addition it is usually easy to
develop by hand. Although this is true
for small piece of logic, it may not be
true for a medium-to-large logic flows.
Another way of representing the model
is suggested by Bizer [BEZ1] and
modified a little by the author of this
article. The following section describes
the new model representation.

The Control Flow List

Each node is represented by a record
in a list of statements. Each record is
listed in one single line except for the
“Switch” node which is represented in
multiple lines. The record consists of a
number of columns separated by a
certain delimiter. The first three
columns in the record as shown in
Table 1 are:

o Node Id: The node Identifier is
a unique identifier for the node,
it can be a serial auto-

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 9 of 20

incremented number or it can
be an alpha-numeric string. The
node identifier is used for
referencing the node and hence
establishing connections
between nodes.

o Node Type: This field represent

whether the node is an entry,
processing, condition,
switching, or an exit node.

o Node description: This field

holds a meaningful text
description for the node. For
example, if the node is a
condition node that checks on
the following condition
“if(Username == “Valid”)” then
the node description may be
“Checking the username is
valid”.

Node
ID

Node
Type

Node
Description

next
reference

true
reference

False
reference

Case
0/Goto 0

Case
1/Goto 1

Case 2/Goto 2

E1 E Entry S2
S2 S Check

username &
Password

validity

 Invalid
Username

Invalid
Password

UN & PSWD are
valid

3 G P2.1 P2.0 C4
P2.1 P The

application
pops up a
message

indicating the
username
isn't valid

X

P2.0 P The
application
pops up a
message

indicating the
password

isn't correct

X

C4 C Request
Schedule?

 C6 C5

C5 C User close
the

application?

 X C4

C6 C Data valid? C8 X
C8 C Request

Approved?
 P10 P9

P9 P The user
should

receive a
rejection ack.

X

P10 P The user
should

receive an
acceptance

ack

X

X X Exit

Table 1: Control Flow List

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 10 of 20

The first three columns are mandatory
for each node regardless of its type.
Depending on the Node Type the rest
of the columns will be either applicable
or not applicable.

o For processing nodes (P):
Since this type of nodes do
some kind of processing and
just points to a next successive
node, the only valid column is
the next reference column. The
next reference holds the node
id for the next node.

o For the entry node (E): It is

the same as the processing
node, it just point to the next
successive node. Hence, the
only valid column is the next
reference column.

o For the exit node (X): The exit

node doesn’t point to any node.
Hence, the rest of the columns
are left empty.

o For the condition node (C):

There are two states for any
condition. Either the condition
is true or false. That is why;
there are two valid columns for
that type of nodes. The true
reference node which holds the
following Node ID if the
condition evalutes to ture. The
false reference node which
holds the following Node ID if
the condition evalutes to false.

o For the Switch node (S): The

switch node is a bit complex in
it’s representation since the

numbers of cases are not
limited as the case for the
condition node. In addition, a
condition node has either a true
or a false alternative which are
self descriptive, but for the
switch node we don’t know
implicitly the meaning of its
possible alternatives.
Accordingly, a switch node is
represented in two subsequent
lines. The first line holds the
description of the switch node
itself as-well as the description
of all its cases. The line doesn’t
hold any reference to any node,
it just describe the switch node
with all its cases. Each case is
described in a single column,
starting from the 7th column.

For example: Let us assume we are
modeling the following switch
node:

Switch (Operating System)
{
 Case WindowsXP:
 doSomething;
 break;

 Case Linux:
 doAnotherThing;
 break;

 Case Solaris:
 doNothing;
 break;
}

The first line of representation will
be as follow:

Node
ID

Node
Type

Node
Description

Next
Ref.

True
Ref.

False
Ref.

Case
0/Goto 0

Case
1/Goto 1

Case 2/Goto
2

S2 S

Check
username &
Password

validitiy

Invalid

Usernam
e

Invalid
Password

UN & PSWD
are valid

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 11 of 20

Now, since we are done with the first
line let us move to the second line that
completes the switch node
representation.

The job of the second line is to connect
the switch node with n-nodes
corresponding to its n-cases. Hence,
for each of alternative/case the Node
Id that represents the following node
is written below that case.

Since all cases should have
corresponding go-to nodes we label
this line as the Goto line. A Goto line is
a must with a switch line, although
both represent a switch node in the
logical model. To make things uniform
and allow automatic entry for the data
using software application, we
introduced the “Goto” node type that
is tightly coupled with the “Switch”
node type. The “Goto” (G) node has no
equivalent meaning in the previous
Control Flow Graph representation, it
just simplify the data entry.

Test Automation Process Based on
the CF Model:
As mentioned in the previous article, a
(Control Flow Model) CFM can be
generated from any phase and at any
level of details. For example, a control
flow graph can be generated directly
from requirements or from a low-level
design documents or from the code
itself. If we develop the CFM from the
requirements document then all test
cases developed later from that model
are related to the black-box testing
process.

If on the other hand, the CFM is
developed from the code then all test
cases developed later from that model
are related to the white box testing
process.
The following list describe a simple
approach for automating both the
black-box and white-box testing
process based on the CFM.

1: Generating the CFL:

The first step is to develop a CFL from
the:

o Requirements document, which
can’t be done automatically.

o Source code, which can be

done automatically using
special compliers developed
using Lex and Yacc, or using 4th
generation languages like Perl,
Python, or Ruby. The job of the
compiler or the script is to
travel through the code
searching for “if” conditions,
“switch-case” blocks, entry, exit
nodes, and important
processing nodes marked by
special pre-defined tags and
produce the CFL.

2: Visualizing the CFL:

Having a CFG will help finding
discontinuities in the control flow
because the human eye can catch path
discontinuities from a graph easier
than to catch it from the textual list.

The objective of this step is to
automate generating a CFG from a
CFL. There are a number of tools and
software 3rd party libraries that
produce visual graph from
intermediate textual representation. I
strongly recommend AT&T Graphviz
library which is very powerful in
drawing large graphs with proper
layout management. Graphviz uses an

1.Generate The
CFL

Source
Code

Req.
Doc.

CFG
Compiler Manual

2. Visualizing the
CFL

3. Generating all
combination of paths & their

corresponding test cases

4. Generating branch
coverage paths and their
corresponding test cases

5. Test code
generation

6. Test code
execution

Figure 2:
Test Automation Process Based on the CF

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 12 of 20

intermediate language/notation called
“dot” to describe the graph to be
generated. If we successfully develop
an adaptor to convert the CFL to the
“dot” notation and passing it to
Graphviz, then the job is done. Figure

3, represent an example of a graph
that was automatically generated from
a source code using AT&T Graphviz
together with a simple locally
developed CFL-to-Dot Perl adaptor.

3: Generating all combination of paths
and their corresponding test cases:

Generating all combination of paths
(P∞) is optional. Recall from the
previous article, the strongest criteria
in coverage is to cover all combination
of paths which is a decision that has to
be taken by the test engineer
depending on the risk, time, and
budget constraints. Anyway, there is
nothing to loose if the task is fully
automated. Developing a simple
C/C++ program that takes a CFL as its
input and produce the following output
files:

o A file containing the description
of all paths.

o An excel sheet or a “comma
separated values” text file
containing the values for all
conditions and switch-case
nodes which if forced the
corresponding path will been
taken.

o A text file that holds all
processing nodes that occur if
their crosseponding path was
selected.

4: Generating branch coverage paths
and their corresponding test cases:

As mentioned before developing all
combinations isn’t economic specially if
those test cases will be executed
manually. Accordingly, there is a need
to develop a program that computes
the minimum set of paths that cover
all branches. A number of algorithms
exist that take all paths as its input
and calculate the reduced set of paths.
The simplest although time-consuming
algorithm is descibed below:

o Count the branch appearance
frequency (BF) for each branch
in the CFL. The frequency is
calculated by counting the
number a specific branch
appears through all path
combinations.

o Sort the branches from lowest
frequency to highest frequency.

o Count the length for each path
(L) computed as the number of
nodes that compose the path.

o Sort the paths according to
their length from bigger paths
to smaller paths.

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 13 of 20

o Now we have two lists:
 Branches List.
 Paths List.

o Select the biggest possible path
which includes the lowest
frequency branch.

o Analyze the selected path and
remove out all the branches
found in that path from the
Branches list.

o Repeat the previous two steps
until all branched are covered
by as much big paths as
possible.

The algorithm won’t get the minimum
set of paths but will get something so
close to the minimum. The algorithm
can be easily implemented using
C/C++ or even 4th generation
languages.

5: Test code generation execution:

The output of step 3 include the
conditions that force each path to
occur as-well as all processing that
take place from the beginning till the
end of that path. Generating the
corresponding test code is not always
an easy job. Using a data driven code
generators, test templates, or test
database can make the job feasible. In
general using generic testing
frameworks with or without tailoring
simplifies the overall development and
execution job. There is a great
advantage in automating the
generation of test code from the test
case data. There will be a significant
reduction of test code maintenance
effort if such dream comes true. If it is
too complex to automate it, try to
semi-automate it, if it is still a complex
job to do try to minimize the test
cases using a weaker coverage
criterion and develop the test code
manually.

6: Test code execution:

Test case execution is the process of
running its equivalent code then
checking and reporting the execution
result. A number of frameworks exist
at all testing levels. For example, the
xUnit is a family of unit testing
frameworks which allow automatic un-
intended execution and reporting of
test benches. The xUnit family
supports a number of languages for
example:

o JUnit for Java.
o CppUnit forC++.
o PUnit for Python.
o NUnit for .Net Platform.

Refernces:

• [BEZ1], Beizer, B., "Black Box

Testing"
• [BEZ2], Beizer, B., "Software

Testing Techniques", 2nd Edition,
Van Nostrand-Reinhold, 1990.

Biography:

Omar Kamal, 7 years of experience in
wireless telecommunications software
development, training, and software
quality management. Working as a
senior software engineer in QuickTel
Research and Development, used to
work with Lucent Technologies,
Hewlett Packard, and Etisalat. He
holds a bachelor’s degree in
telecommunications engineering from
Cairo University, and master’s degree
in business administration from City
University. Also he is a “Certified
Quality Manager” by the American
Society for Quality.

Feedback contacts:

Feedback, comments and questions
are appreciated by the author.
Email: omkamal@yahoo.com

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 14 of 20

Metrics-Based Process Improvement Series:
Let Us Discover another Buzzword “Six Sigma”

 By: Ahmed S. El-Shikh

In two previous articles, I had
conducted a discussion about some of
the numerical aspects in the
software production process; I started
with an article about the
measurement aspects in the software
and focused on the Goal-Question-
Metrics, GQM* approach and its
modified version that called GQ(I)M†
[1]. In the second article, I focused on
how to use these collected data to
describe the nature of the process
capability and limits by applying the
statistical process control “SPC”,
also the relation between the
statistical process control and CMMI
level4 process areas and practices
[2]. Usually, when we start to talk
about the numerical aspects in
software, the mind will go to some
aspects like the number of defects,
time estimation or even the clearest
example in software sizing which is the
count of lines of code (LOC). This is
not the whole story; there are a lot of
numerical aspects in the software that
can be in the spot.

If the God will, I will conduct a series
of articles that focus on the numerical
aspects in the software
engineering and metrics-based
software process improvement
because they provide a solid and
qualitative approach to evaluate the
success degree of the process
improvement efforts. In this article I

* Goal Question Metrics (GQM) is a
measurement approach that binds the
measurement activities to the business
goals.
† Goal Question (Indicator) Metrics, GQ(I)M
is a modified version of the GQM that
introduced the concept of the indicator.

will conduct a step further in
measuring and analysis build on my
two previous articles.

As we know, according to the
organization goals or due to a certain
quality model requirements, the
measuring activities can focus on
measuring some attributes either in
the software product or the process.
Number of defects per module or
components, line of codes (LOC) and
reliability are examples of what you
can measure in the product itself.
Productivity (in LOC/hour as an
example), estimation accuracy and the
yield of the defect removal process are
all examples of what you can measure
in the production process.

After measuring, you can analyze
what you had collected to discover
your process capability through
defining the control limits. When your
limits are clearly defined, this means
that your process voice is known. The
voice of the process (VOP) is what
your process can do for you, but the
question here is what your customer
needs. In other words, some time you
can find yourself in the case of a
difference between your customer’s
voice and your process’s voice.
Whatever your customer is, I mean
internal or external one, you will need
to try to minimize the gap between the
two voices. In more technical
terminology, you will need to conduct
an improvement project.

The difference between your customer
voice and your process voice can
appear in different cases, see the
following figures for illustration.

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 15 of 20

Fig-1: VOP is wider than VOC

Fig-2: VOP is biased from VOC

Fig-3: VOP is wider& biased from VOC.

The above three figures show three
cases in which you can find your
process (or product) different from
your customer specification. The three
figures show that your process behave
normally (i.e. the output is normally
distributed), even if your process
output is not normally distributed, it
can be transferred into normal by
employing “Central Limit Theorem”*.

* The Central Limit theory is beyond the
scope of this executive summary article. It

There are several models to improve
the process. Some of them are based
on logical steps to collect the best
practices from your company. IDEAL
approach is a clear example of this
kind. CMMI itself is a model for
process improvement that collected a
lot of the best practices from a lot of
companies and arranged them in goals
and then in a higher level called
process areas. This type of models can
help the organization to make a shift
in the whole maturity level of and day-
by-day activates and practices. The
question here is what can help in the
case that number of defects per
module is not satisfied for your senior
management, the quality department
may want to increase the yield of the
defect removal process. Finally, you
may want to improve your estimation
accuracy and your team productivity.
In all of the previous cases, you want
to move from a level to level, a limit
to limit, and more precisely from a
number to number. In these cases, Six
Sigma improvement methodology can
be used as a numerical-based
process improvement framework.
Let us spend some time to discover
what this word “Six Sigma” means.

First of all, let us introduce a formal
definition for the “Six Sigma”
methodology. Just be careful of the
terminology, the definition that will be
stated here is for the methodology
itself not for the word “Sigma” or the
number “Six”. “Six Sigma” is: A
comprehensive and flexible system for
achieving, sustaining and maximizing
business success. It is uniquely driven
by close understanding of customer
needs, disciplined use of facts, data,
and statistical analysis, and diligent
attention to managing, improving, and
reinventing business processes [3].
The previous definition describes the
Six Sigma as a system. This means

grantees the ability to use the normal
distribution even if data is not normally
distributed by using samples averages.

VOP

VOC VOP is wider than
VOC, this means
that your process
produce variability
wiser than the
customer
specifications.

Estimation accuracy can fall in this category.

VOP

VOC VOP is biased. This
means that the
average of your
process is different
from your
customer
expectations.

No. of defects/KLOC in testing can fall in this
category.

VOP

VOC VOP is wider
and biased
from VOC.
This means
that exceed
average and
variability
limits.

Estimation accuracy again can fall in this
category.

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 16 of 20

that there are inputs, processing and
outputs. As we see, this definition is a
highly technical wise. In more simple
words, Six Sigma is: A high
performance, data-driven approach
to analyze the root causes of the
business problems and solving them.
It ties the output of the business
process directly to the market place
[4]. As I think, the definitions still talk
about systems, data and root causes.
In the case that you want to get an
agreement from your senior manager
to let your quality team conduct a new
methodology, just use this definition:
Six Sigma is a methodology to align
the company to its marketplace
and deliver more improvement (which
means dollars) to the bottom line [4].
Finally, for your operational managers
and project managers, tell them that
Six Sigma is a methodology to (1)
dramatically reduce the process
variation (i.e. estimation error). (2)
And move your product specification
beyond customer specification [4].

The history of Six Sigma started in
1980’s in Motorola Company. Motorola
started to produce Six Sigma
methodology to help it facing the
increasing competition in the market.
It started as a systematic approach to
track the compatibility between the
customer requirement and the
production abilities and went further to
finish with a formal definition of 3.4
defects per million opportunities, in
more technical terminology, it tends to
make the voice of the customer (VOC)
to be the double of your voice of the
process (VOP) or process capability
coefficient (Cp) equal to 2 [2].

Six Sigma had been built on a basic
concept that considers that “every
thing is a process and all processes
inherit variation”. So, time estimation
is a process, coding is a process, even
employees’ arrival to the company and
employees’ attendance are processes.
Regarding to variations, SIX SIGMA is
designed to deal with the natural

variations and common causes of
variation inside the process. The
assignable cases do not need
improvement project, only corrective
action can solve them.

Since we talked about the natural
variations in the process, a formal
definition for the word “SIGMA”
can be given. The word “SIGMA” is a
Latin symbol, which is used in
statistics to identify the variation in the
data and represent standard deviation.

From the statistical point of view,
the word “SIX SIGMA” means that
your process has that ability to fit six
times of its standard deviation inside
the customer specification at each side
of the average. In other words, the
voice of the process (VOP) is always
equal to 3-sigma above and below the
average. This means that your
process produces 3 defects per one
thousand opportunities because 97%
of the values of the analyzed attribute
are inside the control limits. So if the
customer voice or specifications are
equal to the process specification
(VOC=VOP) this means that these 3
defects will go to the customer side
from each 1000 opportunities. If you
can adjust your process to have Six
Sigma below and above the average to
the customer speciation (VOC= 2
VOP), by reducing the value of sigma,
you can grantee to have only 3.4
defects for each million opportunities
at the customer side.

Fig-4: VOP to VOC in Six Sigma.

VOP

VOC

VOP (totally 6σ) is the half of VOC (totally 12σ)
If your customer voice is constant, you can do
this only by reducing the variation of your
process output.

-6σ +6σ -3σ +3σ

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 17 of 20

From the mathematical point of
view, SIX SIGMA tends to let your
process attribute meets customer
specification. Using SIX SIGMA
terminology, SIX SIGMA tends to let
the process’s symptom (Y) meets and
exceeds the customer specification.
The symptom (Y) depends on several
root causes [Y= F(X1, X2, X3 ….. Xn)].

Fig-5: Root causes of the symptom
under improvement in fish bone

hierarchy.

The fish bone diagram is used as a tool
to discover the most eligible set of the
root causes, but be careful that this
set does not contain the complete set
of the root causes. It just contains the
most eligible ones. It is only an
approximate function for the symptom.
The next step is to try to identify the
most effective root cause in the
equation. In other words, the root
cause (Xi) that significantly changes
the value of the symptom (Y) when its
value changes. This is done by
applying the scatter diagram. The
scatter diagram is a simple way that
can be used to identify the degree of
the correlation between two sets of
data. The more professional method is
to use the regression analysis to do
that.

There is a well-defined framework
to conduct the required steps in that
mathematical analysis, which starts
from choosing a project for
improvement, to collecting the

required data to identify the root cause
and finally solve the problem and
maintain the result. This framework is
called DMAIC approach, which
stands for the initial letter of words:
Define-Measure-Analysis-Improve
and Control. The figure 6 shows the
normal sequence of the DMAIC. Note
that each phase is done once.

Fig-6: The DMAIC sequence.

These 5 steps are done in this defined
sequence and are stand for the basic
and essential steps in the
improvement process. Some opinions
expand these 5-steps to be 8-steps.
They are RDMAICSI. These letters
stands for the initial letter of words:
Recognize-Define-Measure-
Analysis-Improve-Control-
Standardized and Integrate.

Fig-7: The RDMAICSI sequence.

Generally specking all of these five or
eight steps fall into four categories:

o Identification.
o Characterization.
o Optimization.
o Institutionalization.

Identification category contains
recognize and define phases. Measure
and analysis fall into characterization
phase. Improve and control phases
cover the optimization category.
Finally, standardized and integrate
finish the cycle by forming the
institutionalization category. By
investigating these categories you can
discover that they represent the
logical cycle for problem solving.
To solve any problem, you need to

Y

X1
X2

X3

X4

Xn Your Process

C I A M D

I S R DMAIC

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 18 of 20

identify it, then describe it and fully
understand its characteristics.
Characterizing your problem will
enable you to deal with and guide you
to find the required solution. Last step
grantees that you can utilize the
solution in similar problems. Finally,
integrate it with other parts of your
system. Let us walk through these
phases to take more details:

o Recognize: is the first step in
which the company can
discover the importance of
numerical techniques for
process improvement, the
concept of Six Sigma and the
types of problems that the Six
Sigma fits for.

o Define: define phase starts by

nominating several projects
which are eligible for
improvement, then evaluating
these projects according to
some selection criteria to select
the most important project.
Finally, do not escape from this
phase until conducting a
verification process. It aims to
ensure that this project is an
improvement project not a
planning one*.

o Measure: the measure phase

is the most important phase to
characterize the problem. The
symptom (Y) is defined in this
phase and takes a numerical
value that represents the
improvement project baseline.
You do that after defining the
boundaries of the problem. The
problem here is the process or
the part of the process under

* Quality planning is one of the main
branches of the quality triangle and is
fulfilled in SIX SIGMA by using the
Design for Six Sigma, DFSS
methodology

the improvement activity. Some
of the quality tools are essential
in this phase, such as: Flow
diagram, Pareto diagram,
Function Deployment Matrix
(FDM) and Failure Mode and
Effect Analysis (FMEA)†.

o Analysis: the analysis phase

tends to collect a set of all
possible causes (i.e. X1, X2, X3
….. Xn) which affect the
symptom (Y). After formalizing
this set, the method focuses on
utilizing some of the quality
tools to identify the root
cause(s). Brainstorming,
Cause-effect (Fish bone)
diagram, data sheets,
Histogram and Scatter
diagrams are a set of useful
quality tools that can be used in
this phase.

o Improve: you are ready to

start the improvement activity
in this phase after you get the
objective evidence on the root
cause(s) of the problem. All
possible solutions are listed and
selection criteria are defined to
help in choosing the most
suitable solution. The only
quality tool that can be used in
this phase is the improvement
selection matrix.

o Control: just the most suitable

solution is selected, you need
to define some of controls that
enable to maintain the solution
and measure the actual (Ya).
The actual (Ya) is then
compared to the desired (Yd).
if there is a difference, you can

† Some of these tools are from the
Ishikawa’s seven basic tools; others
are advanced quality tools such as the
FDM and FMEA. The explanation of
these tools is out of the scope of this
executive summary article.

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 19 of 20

conduct a second cycle of
improvement until you meet
the desired (Yd). You can use
control spread sheets or even
control charts in this phase.

o Standardized: this phase

grantees that the solution can
be applied in day-by-day
activities through the
organization.

o Integrate: finally, in this

phase you want to be sure that
these day-by-day activities can
integrate with the overall
legacy parts of your process.

Improvement project team is a
remaining important point to conduct.
SIX SIGMA’s DMAIC methodology
suggests a team with a recommended
structure and skills. The team should
contain the following roles besides the
customer, which is the one who will
provide a lot of valuable information
and can get benefits from the
improvement effort:

o Champion.
o Master Black Belt.
o Black Belt.
o Green Belt.
o Orange belt.

The champion plays the role of
leading the initialization and
deployment of the Six Sigma approach
into the organization.

The Master Black Belt is an expert
selected by the champion to be in-
house to provide training and coaching
the reminder team members. He is a
full time expert and gives 100% of his
effort for Six Sigma.

The Black belt is the dedicated team
leader for the Six Sigma improvement
team. He trains the green and orange
belt and leads the team through the
DMAIC phases.

The Green Belt is the one who
execute the project and do the
required steps and using the required
quality tools to active the desired
improvement result. He can be a full
or part time; this depends on the team
size, project size, project duration and
a lot of other aspects that affect the
deadline of the project.

The Orange Belt is usually a team
member that gets a fast training on
the Six Sigma approach to gain the
essential awareness, and to be able to
share in the different phases in the
project. This employee is very
important in the improvement project
even with being the lowest level of
knowledge about the methodology. He
is the most experienced team member
with the process under the
improvement, so he represents the
information bank for the team.

SIX SIGMA methodology still contain a
lot of aspects that need more and
more articles to be explained. If the
God will, I will complete the series of
the numerical aspects in the software
process with some articles about:

o The relation between the CMMI
and Six Sigma methodology
and how you can integrate both
of them inside your company.

o Integrating Six Sigma with PSP

and TSP to improve your
productivity.

o Integration between Six Sigma

and the agile software
engineering methodologies
such as extreme programming
(XP).

This is just a proposal for the series.
According to the feedback comments, I
can change the sequence and focus on
giving detailed case studies and
applying tutorials.

Egypt-SPIN Newsletter Issue 9, Jan - Mar 2005
Sponsored by SECC Page 20 of 20

References

[1] Ahmed S. El-Shikh, “The Blind
Manager, Can he drive through the
competition? Software Measurements”,
article in the 6th issue of the Egypt
SPIN newsletter, 2004.

[2] Ahmed S. El-Shikh, “Discover your
capability and let numbers play their
rule, Statistical Process Control”,
article in the 7th issue of the Egypt
SPIN newsletter, 2004.

[3] “The Six Sigma Way”, book for
Peter S. Pande, Robert P. Neuman And
Roland R. Cavanagh, 2000.

[4] Dan Burton and Don MacAndrews,
“Enable statistical Process Control and
Six Sigma for Software”. SEI
presentation, August, 2000.

Biography

Ahmed S. El-Shikh, the Quality
Assurance Manager in Systems
Advisory & Solutions, (SAS). He holds
a bachelor’s degree in the control and
computer engineering, 1998 and a
Diploma in the “Total Quality
Management” from the AUC, 2004. His
interests include software engineering
aspects, software quality
management, statistical quality control
and process Improvement approaches
specially the “Six Sigma, DMAIC,
DAMDV & DFSS”.

Feedback Contacts

Feedback, comments and questions
are appreciated by the author.

Email:

el_shikh@sas-sys.com

